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1. Introduction  

Stability at operating points is one of the key 

requirements of engineering systems. As long as 

the system is given by time-invariant dynamics, 

linearization at the operating point gives local 

stability information that can be extended through 

incorporating some nonlinear features, e.g., via the 

use of normal forms, see [1]. If the system under 

consideration has timevarying dynamics, the usual 

modal approach fails since for these systems 

eigenvalues do not describe the stability behavior 

of the linearized system. Therefore, one has to 

approach (exponential) stability directly via the 

Lyapunov exponents of the system at the operating 

point. An important class of systems with time 

varying dynamics are those systems that are subject 

to sustained random perturbations, such as load 

behavior, environmental effects, or intermittent 

generation in power systems. The interaction 

between system dynamics and perturbation falls 

into two groups: (i) the random noise changes the 

operating point of the system, or (ii) the 

equilibrium point persists under all perturbations. 

We have developed performance indices for case 

(i) in [2], and analyzed one specific approach in 

case (ii) in [3] using almost sure Lyapunov 

exponents. This paper develops several 

performance indices for case (ii), analyzes their 

relationships, and compares the results for several 

examples. The key idea is the look at the sample 

(exponential) growth rates for trajectories and at 

the growth rates of moments of the trajectories, 

such as the stability of the mean, or mean square 

stability involving the second moment. Both points 

of view result in potentially useful performance 

criteria for power systems. 

Mathematical background 

The system model 

We start from a nonlinear differential equation 

y(t)=f(y(t),ᶓ(t,ω)) in Rd with sustained random 

perturbation ᶓ (t,ω). In order to analyse optimal 

parameter settings for stability at an operating 

point, we linearize the system equations at the 

equilibrium point y. Linearization (with respect to 

y) at the equilibrium results in the system where 

A(ᶓ (t,ω)); is the Jacobian of ƒ(y,(t), ᶓ (t,ω)at y. We 

denote ᶓ (y,ω) by the trajectories of (1) with initial 

value uð0; x;xÞ ¼ x 2 Rd . We think of a given 

probability space ðX; F; PÞ under the usual 

conditions on which the Wiener process in (2) is 

defined. We use the notation x 2 X, and all 

expectations EðÞ are with respect to the given 

probability measure P. The random perturbation 

can be considered as white noise, leading to a 

stochastic differential equation for (1), or as a 

colored, bounded noise. In this paper we discuss 

the latter situation since macroscopic perturbations 

in engineering systems generally are non-white; but 

a similar theory also holds for the white noise case, 

see [4] for the basics. We start from a background 

noise g, given by a stochastic differential equation 

on a compact C1-manifold M 

 

where the vector fields 

 denotes the 

Stratonovic stochastic differential. We assume that 

(2) has a unique stationary, ergodic solution  which 

is guaranteed by the condition (compare [5]) 

 

Here LAfg denotes the Lie algebra generated by a 

set of vector fields. The background noise gðt;xÞ is 

mapped via a surjective smooth function f :
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, into the system perturbation nðt;xÞ. 

This setup allows great flexibility when modeling 

the statistics of the system noise. 

 

and for the Lyapunov exponent of the pth 

moment is given by 

 

 

This includes for p =1 the exponential growth 

behavior of the mean, and for p =2 the exponential 

mean square stability of the system. We again need 

the projection of the linear system onto the sphere 

Sd-1 in Rd : 

 

where ‘‘ T ’’ denotes the transpose. via 

identification of s and -s Eq. (6) can be considered 

on the projective space Pd-1. The Lyapunov 

exponents of all system states x ϵ Rd \ {0}} can be 

analyzed together if the perturbation affects all 

states. This is expressed in the condition 

 

for all Another 

approach to condition (7) is as follows: Let I be the 

ideal in generated by 

. Then, by [5], Condition (7) is 

equivalent to dimI I(O,S)h= dimM +d = 1. This 

condition, which is needed for the analysis of 

moment Lyapunov exponents, is slightly stronger 

than Condition 7 in [6], but it is generally satisfied 

for systems that appear in applications, compare, 

e.g., [5] or [10]. 

Theorem 2.1. Consider the stochastic system (1) 

under the conditions (3) and (7). Then  

1. the moment Lyapunov exponents exist as a limit 

and they are independent of 

 

  

2. the trajectory-wise Lyapunov exponents are a.s. 

constant and independent of 

 

 

The proof of Theorem 2.1 is given in [7], Theorem 

1 for the first part, and in [10], Theorem 4.1 for the 

second part upon noticing that Conditions (3) and 

(7) together imply Conditions (A) and (C) in [10]. 

With the results from Theorem 2.1 it was shown by 

Arnold in [7] that the a.s. Lyapunov exponent is the 

derivative of the moment Lyapunov exponent 

function at 0:  

Corollary 2.2. Consider the stochastic system (1) 

under the conditions (3) and (7). Then the function 

g(p) is analytic on R, convex, and satisfies g(0) = 0 

and g’(0) =ʎ. 

Remark 2.3. The information contained in 

Corollary 2.2 shows that 

1. If the a.s. Lyapunov exponent of the system (1) 

is negative, i.e., if the system is almost surely 

exponentially stable, then moments for small p > 0 

are also exponentially stable. And vice versa, if 

moments for small p > 0 are exponentially stable, 

then the system is a.s. exponentially stable. 

 2. The moment exponent function g(p) has at most 

two zeros. Specifically, if the system is a.s. 

exponentially stable, i.e., if k < 0, then g(p) has at 

most one zero besides g(0) = 0, and this occurs for 

p > 0. Assume that such a second zero exists at a > 

0, then all pth moments are stable for 0 < p < a, and 

unstable for a < p < ꚙ.  

In light of Remark 2.3 the key question regarding 

the exponential stability of the moments of (1) is 

the existence of a second zero of g(p), i.e., the 

existence of a > 0 with g(a) = 0. Such a point a does 

not always exist since g(a) = ʎp is possible, 

compare [9], Theorem 2.3, Case 2.1.2(a). A 

detailed analysis of this question involves the 

function c : R -R, given by 
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According to Corollary 2.2 this function is analytic 

on R and increasing. We define 

 

 

Stability-based performance indices for 

stochastic systems 

Performance indices  

In this section we discuss performance indices for 

systems under stochastic perturbations. The goal is 

to identify system parameters that allow for optimal 

(exponential) stability behavior of a system at a 

stable operating point. Since exponential stability 

can be inferred from the system linearization, we 

consider systems as in (1), and we assume that the 

perturbation can be modeled by a function of a 

Markov-diffusion process as in (2). More 

specifically, our goal is to guarantee stability of the 

system under the largest possible perturbation 

range. 

The size of the random perturbation is described in 

the following way: We consider the noise range U 

ᴄ Rm to be convex, compact with 0 ϵ int U, the 

interior of U. Introducing the size parameter  P≥0 

we consider Uq := q U together with the maps f q : 

M - Up, fÞ (ϴ)=p.ƒ(ϴ).In this way we obtain a 

family ᶓP(t,ω) ,p≥0  of system perturbations with 

corresponding dynamics (1)q. For q = 0 this model 

corresponds to the unperturbed system. To be 

precise, we analyse the family of systems 

 

where b ϵ Bc Rk is a vector of parameters that are to 

be tuned in such a way that the system (10) is 

stable for p ≥0 as large as possible.  

The almost sure stability radius 

 

was introduced in [12] and analyzed in detail in [3]. 

Here kðqÞ denotes the a.s. Lyapunov exponent of 

(10). In a similar way, one can define the pth 

moment stability radius as 

 

with gÞ (p) as defined in (5) for the system (10). 

This stability radius provides an appropriate 

performance index if emphasis is placed on 

stability of specific moments of a system, such as 

the mean (p = 1) or mean square stability (p = 2). In 

both cases the design problem can be written as 

 

Section 2.2 points at other performance indices that 

can be useful for the evaluation of stability: 

Specifically, the second zero a(Þ) > 0 of the 

moment Lyapunov exponent function gÞ(p) of (10) 

not only describes the moments that are 

exponentially stable (see Remark 2.3), but also the 

boundedness behavior of individual trajectories 

(see Remark 2.5). For a given stochastic 

perturbation with given range Uq the design 

problem reads in this case 

 

This radius turns out to be described by the 

maximal Bohl exponent, or the maximum of the 

Morse spectrum of a deterministic perturbation (or 

control) system associated with (10), see [13], 

Chapter 7 for a detailed discussion of these 

concepts. In the following sections, we will analyze 

the moment stability radius and the stability index 

problem together with their relationships to the a.s. 

stability radius. 

 Computation of indices 

While the computation of a.s. Lyapunov exponents 

has attracted great interest (see, e.g., [6,11,16], or 

[17] and the references therein), the computation of 

moment Lyapunov exponents seems relatively 

unexplored. One way is to write gÞ(p) as the 

maximal eigenvalue of a certain second order 

partial differential operator (see, e.g., [7] for the 

white noise, and [9] for the general case). This idea 

has been followed, e.g., in [21], in some examples 

of Chapter 9 in [20], or in [18], but generalizations 

to high dimensional systems appear more than 

cumbersome. 
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 The other approach is to follow the definition (5), 

i.e., simulate trajectories of the system (1), compute 

the moments and their exponential growth rate, see 

e.g., [19] or [20], Chapter 9.2 for an idea in this 

direction. Our experiences from [6] suggest to 

simulate solutions directly from the linear 

differential equation, using renormalization at 

regular time intervals since the trajectories grow or 

decay exponentially. This leads to the following 

approach: 

 

The numerical approximation of moment 

Lyapunov exponents given by Formula (16) uses 

only numerical solutions of (1) on time intervals of 

length t  ðt  1Þ ¼ 1 and hence avoids solutions 

growing or decreasing exponentially over a long 

period of time. If time intervals of length 1 are too 

long to give reliable numerics for specific systems, 

this approach can easily be adapted to smaller 

intervals. Of course, burn-in intervals and choice of 

initial values have to be considered carefully, see 

[6] for a discussion of these issues for a.s. 

Lyapunov exponents; these considerations apply as 

well to the computation of moment exponents.  

The performance indices introduced in Section 3.1 

depend on moment Lyapunov exponents, and they 

require optimization with respect to the size q of 

the perturbation range and/or with respect to the 

tunable parameters b 2 B of the system. Given the 

general setup we have provided in the previous 

sections, we do not expect analytical results on 

these optimization problems. Therefore, 

optimization is performed numerically over a grid 

in the parameter spaces.  

 Examples  

 Three-dimensional linear oscillator  
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Conclusions  

This paper proposes several performance indices 

for the stability of operating points in dynamical 

systems affected by sustained random 
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perturbations. These indices are based on moment 

Lyapunov exponents and they complement the 

almost sure Lyapunov exponent and stability radius 

analyzed in [6,2]. The two sets of indices are 

related by the fact that the almost sure Lyapunov 

exponent of a system is the derivative at p = 0 of 

the pth moment Lyapunov exponent function g(p). 

This means, in particular, that for small moments p 

> 0 the pth moment Lyapunov exponents contain 

the ’same’ information as the a.s. exponent, while 

for large moments p ≥≥ 0 the pth moment 

Lyapunov exponents contain the ’same’ 

information as the maximal deterministic (robust) 

exponent yþ, compare Remark 2.4. Hence for 

design purposes stability indices based on moment 

Lyapunov exponents can be used to strike a balance 

between almost sure behaviour based on specific 

random perturbations, and behaviour based on the 

range of the perturbation. Design issues 

surrounding moment stability indices are the topic 

of a forthcoming paper.  

Note that while we always have for the moment 

Lyapunov function g(p) that g(p) = 0, for a stable 

operating point the second zero of g(p), i.e., the 

point a > 0 with g(p) =0 determines the moment 

stability behavior. In realistic systems, such as the 

one machine – infinite bus power system, this 

second zero a may not depend in a monotone 

fashion on the size of the random perturbation, and 

on the amount of damping in the system. This 

indicates that optimal parameter tuning relative to 

exponential moment stability cannot simply be 

achieved by increasing system damping, such as 

PSS gains. 

 A key question then is to what extend system 

design that uses indices based on almost sure or 

moment Lyapunov exponents, depends on the 

specific statistics of the system noise ᶓ(t,ω). Of 

course, if one wants to immunize a system against 

all specific noise statistics, one will have to use the 

deterministic (robust) exponent y+: this index 

depends only on the size of the perturbation, not on 

its statistics, see the comments above. The 

robustness of the design indices presented in this 

paper relative to noise statistics is the topic of on-

going research. 
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